31 research outputs found

    On vanishing of Kronecker coefficients

    Full text link
    We show that the problem of deciding positivity of Kronecker coefficients is NP-hard. Previously, this problem was conjectured to be in P, just as for the Littlewood-Richardson coefficients. Our result establishes in a formal way that Kronecker coefficients are more difficult than Littlewood-Richardson coefficients, unless P=NP. We also show that there exists a #P-formula for a particular subclass of Kronecker coefficients whose positivity is NP-hard to decide. This is an evidence that, despite the hardness of the positivity problem, there may well exist a positive combinatorial formula for the Kronecker coefficients. Finding such a formula is a major open problem in representation theory and algebraic combinatorics. Finally, we consider the existence of the partition triples (λ,μ,π)(\lambda, \mu, \pi) such that the Kronecker coefficient kμ,πλ=0k^\lambda_{\mu, \pi} = 0 but the Kronecker coefficient klμ,lπlλ>0k^{l \lambda}_{l \mu, l \pi} > 0 for some integer l>1l>1. Such "holes" are of great interest as they witness the failure of the saturation property for the Kronecker coefficients, which is still poorly understood. Using insight from computational complexity theory, we turn our hardness proof into a positive result: We show that not only do there exist many such triples, but they can also be found efficiently. Specifically, we show that, for any 0<ϵ≤10<\epsilon\leq1, there exists 0<a<10<a<1 such that, for all mm, there exist Ω(2ma)\Omega(2^{m^a}) partition triples (λ,μ,μ)(\lambda,\mu,\mu) in the Kronecker cone such that: (a) the Kronecker coefficient kμ,μλk^\lambda_{\mu,\mu} is zero, (b) the height of μ\mu is mm, (c) the height of λ\lambda is ≤mϵ\le m^\epsilon, and (d) ∣λ∣=∣μ∣≤m3|\lambda|=|\mu| \le m^3. The proof of the last result illustrates the effectiveness of the explicit proof strategy of GCT.Comment: 43 pages, 1 figur
    corecore